

 Navigation

 	Spark Replay Debugger Overview 0.1.0-aphla documentation

Spark Replay Debugger Overview

	Author:	Cheng Lian <rhythm.mail@gmail.com>, Intel Labs China

	Date:	2013/12/03

	Git branch:	https://github.com/liancheng/incubator-spark/tree/replay-debugger

	JIRA issue:	SPARK-975 [https://spark-project.atlassian.net/browse/SPARK-975]

	Pull Request:	PR-224 [https://github.com/apache/incubator-spark/pull/224]

Contents

	Spark Replay Debugger Overview
	Introduction
	Features

	Missing features

	Usage
	Using SRD in the Spark REPL shell

	Using SRD in Spark application

	Major components
	EventLogger

	EventReplayer

	Differences between Arthur and SRD
	Event reporting

	RDD collection

	Debugging assertions
	The Arthur way

	The SRD way

	Limitations

	Future work

Introduction

This document provides a design overview and a simple usage description of the Spark Replay Debugger (abbreviated as SRD below). For impatient readers that are only interested in how to use SRD, please jump to the Usage section.

The Spark debugger was first mentioned as rddbg in the RDD technical report [http://www.cs.berkeley.edu/~matei/papers/2011/tr_spark.pdf]:

Finally, we have taken advantage of the deterministic nature of RDDs to build rddbg, a debugging tool for Spark that lets users rebuild any RDD created during a job using its lineage and re-run tasks on it in a conventional debugger.

...

We stress that rddbg is not a full replay debugger: in particular, it does not replay nondeterministic code or behavior. However, it is useful for finding logic bugs as well as performance bugs where one task is consistently slow (e.g., due to skewed data or unusual input).

Arthur [https://github.com/mesos/spark/tree/arthur], authored by Ankur Dave [https://github.com/ankurdave], is an old implementation of the Spark debugger. Unfortunately, the corresponding GitHub branch was not merged into the master branch and had stopped 2 years ago. For more information about Arthur, please refer to the Spark Debugger [https://github.com/mesos/spark/wiki/Spark-Debugger] Wiki page in the old GitHub repository [https://github.com/mesos/spark].

Arthur is useful in both Spark job debugging and analyzing. For example, it provides a nifty visualization feature powered by GraphViz, which can visualize the RDD lineage DAG of any given job. The RDD technical report also provided interesting use cases.

The motivation of SRD is to complete this useful tool, and provide a basic mechanism upon which more sophisticated interactive debugging/analytics tools can be built.

Features

Features already implemented in SRD includes:

	RDD lineage DAG visualization (with source location and pipelining information)

RDD lineage DAG visualization is based on GraphViz. All output formats supported by GraphViz are also supported. Here is a sample visualization of the MLlib ALS application (with 1 iteration):

[image: _images/als-1-small.png]
MLlib ALS RDD lineage DAG (1 iteration). RDDs are represented as small boxes, stages are represented as large rectangles, and shuffle dependencies are represented as red arrows. Click here for the high resolution version.

	Debugging assertions

Debugging assertions can be considered as additional invariant checking closures attached to given RDDs. Users can attach them to RDDs reconstructed from the event log or use them directly within their Spark applications. When RDDs with assertions are computed, AssertionErrors would be thrown if the assertions fail.

Currently SRD provides two types of debugging assertions:

	Forall-assertion

Similar to Scala’s Seq.forall predicate. It applies a predicate closure of type T => Boolean and checks whether all elements within the RDD conforms to the predicate.

	Exists-assertion

Similar to Scala’s Seq.exists predicate. It applies a predicate closure of type T => Boolean and checks whether there exists at least one element within the RDD that conforms the predicate.

More assertion types are planned to be supported in the future.

Missing features

Current SRD implementation is considered to be a preview of the basic mechanism. Some features existed in Arthur are still missing, including:

	Checksum based transformation nondeterminism detection

	Individual task debugging with conventional debugger (jdb for example)

However, with the help of the current SRD framework, these features can be easily implemented soon. Please refer to the Arthur Wiki page [https://github.com/mesos/spark/wiki/Spark-Debugger] for details about these two features.

Usage

You may checkout the replay-debugger branch from GitHub:

$ git clone git@github.com:liancheng/incubator-spark.git
$ git checkout replay-debugger

Or add a new remote to your existing local repository:

$ git remote add liancheng https://github.com/liancheng/incubator-spark.git
$ git fetch liancheng
$ git checkout replay-debugger

Then build Spark with ./sbt/sbt clean assembly.

SRD involves two properties:

	spark.eventLogging.enabled

To enable event logging (and SRD), set this property to true. Default to false.

	spark.eventLogging.eventLogPath

The event log file path. Must be a valid file path if spark.eventLogging.enabled is true. If the file already exists, it will be overwritten.

To enable SRD, you must first define these two properties by, for example, appending the following lines in conf/spark-env.sh:

export SPARK_JAVA_OPTS+=" -Dspark.eventLogging.enabled=true"
export SPARK_JAVA_OPTS+=" -Dspark.eventLogging.eventLogPath=/tmp/replay.log"

Note

To use the visualization feature, the GraphViz dot program is also required.

Using SRD in the Spark REPL shell

Start the Spark shell and try the sample dialog below:

$./spark-shell
...
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 0.9.0-SNAPSHOT
 /_/

...
Spark context available as sc.
Type in expressions to have them evaluated.
Type :help for more information.

scala> val r0 = sc.makeRDD(1 to 4) // Make the 0th RDD
r0: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at <console>:12

scala> val r1 = r0.map(_ * 2) // Make the 1st RDD
r1: org.apache.spark.rdd.RDD[Int] = MappedRDD[1] at map at <console>:14

scala> r1.collect() // Run the job
...
res0: Array[Int] = Array(2, 4, 6, 8)

scala> val replayer = new org.apache.spark.EventReplayer(sc) // Make an event replayer
replayer: org.apache.spark.EventReplayer = org.apache.spark.EventReplayer@7a20e369

scala> replayer.printRDDs() // List all RDDs in the event log
#0: ParallelCollectionRDD makeRDD at <console>:12
#1: MappedRDD map at <console>:14

scala> val x1 = replayer.rdds(1) // Reference to the 1st RDD restored from event log
x1: org.apache.spark.rdd.RDD[_] = MappedRDD[1] at map at <console>:14

scala> val x1WithAssertion = replayer.assertExists[Int](x1) { _ == 0 }
x1WithAssertion: org.apache.spark.rdd.RDD[Int] = MappedRDD[1] at map at <console>:14

scala> x1WithAssertion.collect() // Run the job with assertion
...
java.lang.AssertionError:
RDD exists-assertion error:
 RDD type: MappedRDD
 RDD ID: 1
 partition: 0
...

scala> replayer.visualizeRDDs("png", "rdds.png") // Visualizes the RDD DAG
res4: java.lang.String = rdds.png

[image: _images/repl-rdds.png]
Visualized RDD lineage DAG obtained from the sample REPL dialog

Using SRD in Spark application

You may find an example application EventReplayerTest in the examples directory that does exactly the same thing as the above REPL session:

package org.apache.spark.examples

import org.apache.spark._

/**
 * An example to show how to use `EventReplayer`
 */
object EventReplayerTest extends App {
 if (args.length < 1) {
 System.err.println("Usage: EventReplayerTest <master>")
 System.exit(1)
 }

 // Enables event logging
 System.setProperty("spark.eventLogging.enabled", "true")
 System.setProperty("spark.eventLogging.eventLogPath", "/tmp/replay.log")

 val sc = new SparkContext(args(0), "EventReplayerTest",
 System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_EXAMPLES_JAR")))

 // Makes 2 RDDs
 val r0 = sc.makeRDD(1 to 4)
 val r1 = r0.map(_ * 2)

 // Runs the job. Events would be logged into /tmp/replay.log
 r1.collect()

 // Makes an `EventReplayer` which loads events from /tmp/replay.log
 val replayer = new EventReplayer(sc)

 // Lists all RDDs created in the job
 replayer.printRDDs()

 // Visualizes the 2 RDDs created earlier.
 replayer.visualizeRDDs("png", "rdds.png")

 try {
 // Adds an assertion to the reconstructed RDD and re-run the job.
 // Notice that this time the job would fail because of assertion error.
 val x1 = replayer.rdds(1)
 val x1WithAssertion = replayer.assertExists[Int](x1) { _ == 0 }
 x1WithAssertion.collect()
 } catch {
 case e: SparkException =>
 println(e)
 } finally {
 sc.stop()
 }
}

You may run this example in local mode with the following command:

$./run-example org.apache.spark.examples.EventReplayerTest local

Or run it in cluster mode by:

$./run-example org.apache.spark.examples.EventReplayerTest spark://<host>:<port>

Here is the visualization result of the above application. Note that source location information is included:

[image: _images/app-rdds.png]
Visualized RDD lineage DAG obtained from the sample application

Major components

EventLogger

The EventLogger is a SparkListener that collects necessary events from the SparkListenerBus and persists them to the event log file. If there is an EventReplayer registered, it also forwards captured events to the registered EventReplayer. When event logging is enabled, an EventLogger would be created and registered to the SparkListenerBus once a SparkContext is created.

Currently, EventLogger listens to the following events:

	SparkListenerJobStart

This event is emitted when a job is submitted. The RDD lineage DAG is reconstructed with data carried by this event.

	SparkListenerJobEnd

This event is emitted when a job ends, either out of success or failure. Can be used to check nondeterminism, not implemented yet.

	SparkListenerTaskStart

This event is emitted when a task starts. Used to collect task information for later debugging.

	SparkListenerTaskEnd

This event is emitted when a task ends, either out of success or failure. Task end reasons and task results can be collected from this event.

EventReplayer

EventReplayer is the main user interface exposed by SRD. RDD lineage DAG reconstruction, visualization, debugging assertion and all other features (to be) provided by SRD are implemented here.

When an EventReplayer is created, it reads persisted events from the event log, and registers itself to the EventLogger, so that it can get updated when new events are captured.

Differences between Arthur and SRD

In general, the main idea behind SRD is very similar to Arthur——records key events and replay them later. But they do differ in some major aspects.

Event reporting

At the time Arthur was implemented, there was no effective cluster-wide event reporting facility. Thus Arthur implemented EventReporter to gather key events from all nodes to the driver. Now, Spark has already implemented SparkListenerBus, which takes roughly the same responsibilities of EventReporter. With the help of SparkListenerBus, SRD is much more concise than Arthur.

RDD collection

To collect all RDDs to reconstruct the RDD lineage DAG, Arthur does two things:

	Emits an RDD creation event by adding a reportCreation() call at the end of every concrete RDD class constructor;

	Serializes the RDD instance once the EventReporter captures the RDD creation event.

This approach has two major drawbacks:

	It’s intrusive, every concrete RDD classes must be modified to emit the RDD creation event. And...

	More importantly, concrete RDD classes can never be inherited again.

Otherwise, there would be two reportCreation() calls, one issued from the base class constructor, and another from the derived class constructor. Notice that we can’t simply put a reportCreation() call at the end of the constructor of the abstract RDD class, because at that point, the concrete RDD instance is not fully constructed yet, thus the serialized RDD object may also be incomplete.

Instead, SRD collects RDDs from the ActiveJob object comes with the SparkListenerJobStart event emitted when a job is submitted (please refer to the collectJobRDDs() method in EventReplayer). RDD lineage DAGs are reconstructed in a stage by stage manner. Notice that we can’t reconstruct the whole DAG with only the final RDD of the final stage. It is because parent RDDs pointed by ShuffleDependency instances are not serialized (ShuffleDependency.rdd is annotated as @transient).

In contrast of Arthur, SRD won’t collect RDDs until a job is actually submitted. Since generally RDDs are created to be run in some jobs, this compromise makes sense.

Debugging assertions

The Arthur way

In Arthur, debugging assertions are implemented as new assertion RDDs and are instrumented into the original RDD lineage DAG in a functional manner——the original RDD lineage DAG is left untouched, while a new DAG with assertion RDDs instrumented is incrementally constructed. A new API called mapDependencies was added to the RDD class hierarchy to clone concrete RDD instances with different dependencies. Take the following lines as an example:

val r0 = sc.makeRDD(1 to 10)
val r1 = r0.map(_ + 1)
val r2 = r0.map(_ * 2)
val r3 = r1.zip(r2)

We may easily draw the RDD DAG as follow. The final RDD is clearly r3:

[image: digraph lineage_dag { rankdir=BT ranksep=0.5 nodesep=1 scale=0.5 node [shape=rectangle] "r1" -> "r0" "r2" -> "r0" "r3" -> "r1" "r3" -> "r2" }]

By adding an assertion to r2, we obtain a new RDD DAG consists of r0, r1, r2, assertion and r3', like this:

[image: digraph lineage_dag_with_assertion { rankdir=BT ranksep=0.5 nodesep=1 node [shape=rectangle] "r1" -> "r0" "r2" -> "r0" "r3" -> "r1" "r3" -> "r2" node [color=red fontcolor=red] edge [color=red] "assertion" -> "r2" "r3'" -> "assertion" "r3'" -> "r1" "r3'" -> "r3" [color=blue label=mapDependencies fontcolor=blue arrowhead=none style=dashed] }]

The old DAG and the new DAG share 3 nodes, namely r0, r1 and r2. The final RDD of the new DAG is r3', which is mapDependencies-ed from r3.

At a first glance, this approach seems elegant, but it exposes some drawbacks:

	The mapDependencies API is intrusive.

Every concrete RDD class must override it to make sure the dependencies of the new RDD cloned from itself are correctly set up.

	Difficult to track and present.

To replay the job with assertion RDDs instrumented, we must locate the final RDD of the new lineage DAG. After adding a few assertions, there would be several versions of the lineage DAG overlapped together, which is difficult to track and present.

The SRD way

Instead of transforming the RDD DAG, SRD adopts a much simpler approach by adding two hooks preCompute and postCompute to the abstract RDD class. As the name suggests, these two hooks are called before and after the compute method of RDD. User can customise these two hooks to implement various logic. Debugging assertions in SRD are implemented around these two hooks (currently only postCompute is used).

In this way, assertions are directly attached to the origianl RDD instances, no new RDD instances are needed. Furthermore, existing RDD classes are left untouched.

Limitations

Users may be interested in such a scenario:

	Turn on event logging in the production cluster;

	Run some job and save the event log file;

	Replay the event log in some offline testing cluster for further analysis.

Unfortunately, except for some embrassingly simple applications (i.e. without shuffling and broadcasting), for most cases, you can’t replay the event log offline. The reason is that, although we captured the RDD lineage DAG and all the key events happend during the job, the runtime environment was not and often too costy or even impossible to be captured altogether. Without the environment context, the deserialization process of some event objects may fail.

For example, when trying to replay the event log generated from the example SparkALS application, Arthur complains:

scala> val r = new EventLogReader(sc, Some("als.log"))
13/12/02 11:02:18 INFO broadcast.DfsBroadcast: Started reading Broadcasted variable 67372b75-4ef7-4780-a6ed-c8fa8ea53d15
java.io.FileNotFoundException: /tmp/broadcast-67372b75-4ef7-4780-a6ed-c8fa8ea53d15 (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:146)
 ...

Naturally, SRD suffers the same problem:

scala> val d = new org.apache.spark.EventReplayer(sc, "replay.log")
13/12/02 10:56:12 INFO HttpBroadcast: Started reading broadcast variable 0
java.io.FileNotFoundException: http://10.174.82.124:49554/broadcast_0
 at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624)
 at java.net.URL.openStream(URL.java:1037)
 at org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:142)
 ...

Thus, except for some trivial applications, it is suggested to run and debug the job with SRD within the same REPL session, or use SRD directly in your applications.

One possible solution to this problem is that, instead of persisting all key events emitted, we may choose to serialize the RDD lineage DAG only. As long as the input data remains, the job can always be replayed.

Future work

	Checksum based transformation nondeterminism detection

	Single task debugging with conventional debugger

	Pipelining visualization

	Provides more debugging assertions

 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		Spark Replay Debugger Overview 0.1.0-aphla documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.2.2.

_static/down.png

_images/als-1-small.png

_images/graphviz-8437a68a684636575927c5d580e479a42f1d3b3b.png
3 assertion

.
imapDependencies
v

13

_static/als-1-large.png
#0: HadoopRDD
textFile at ALS.scala:589

!

#1: MappedRDD
textFile at ALS.scala:589

f

#2: MappedRDD
map at ALS.scala:589

1

#3: MappedRDD
map at ALS.scala:146

#4: MappedRDD
map at ALS.scala:147

- -
#5: ShuffledRDD
partitionBy at ALS.scala:289
#6: MapPartitionsRDD
mapPartitionsWithIndex at ALS.scala:290 N |

#8: MappedValuesRDD
mapValues at ALS.scala:297

#13: MapPartitionsRDD

mapPartitionsWithIndex at ALS.scala:164

> 4

#15: CoGroupedRDD
join at ALS.scala:326

[

#16: MappedValuesRDD
join at ALS.scala:326

!

#17: FlatMappedValuesRDD
join at ALS.scala:326

i

#18: FlatMappedRDD
flatMap at ALS.scala:326

~—

#9: ShuffledRDD
partitionBy at ALS.scala:289

\

#19: ShuffledRDD
groupByKey at ALS.scala:334

#10: MapPartitionsRDD
mapPartitionsWithIndex at ALS.scala:290

f

/4

#20: MapPartitionsRDD
groupByKey at ALS.scala:334

#11: MappedValuesRDD
mapValues at ALS.scala:297

N

_

#21: CoGroupedRDD
join at ALS.scala:335

[

#22: MappedValuesRDD
join at ALS.scala:335

[

#23: FlatMappedValuesRDD
join at ALS.scala:335

#12: MappedValuesRDD
mapValues at ALS.scala:297

~

#24: MappedValuesRDD
mapValues at ALS.scala:336

S/ A

#39: CoGroupedRDD
join at ALS.scala:231

!

#40: MappedValuesRDD
join at ALS.scala:231

f

#41: FlatMappedValuesRDD
join at ALS.scala:231

[

#42: FlatMappedRDD
flatMap at ALS.scala:231

[y

#45: MappedRDD
map at ALS.scala:598

f

#46: MappedRDD
saveAsTextFile at ALS.scala:599

#25: CoGroupedRDD
join at ALS.scala:326

!

#26: MappedValuesRDD
join at ALS.scala:326

!

#27: FlatMappedValuesRDD
join at ALS.scala:326

L)

#28: FlatMappedRDD
flatMap at ALS.scala:326

e

#29: ShuffledRDD
groupByKey at ALS.scala:334

f

#30: MapPartitionsRDD
groupByKey at ALS.scala:334

#7: MappedValuesRDD
mapValues at ALS.scala:297

#31: CoGroupedRDD
join at ALS.scala:335
[

#32: MappedValuesRDD
join at ALS.scala:335

f

#33: FlatMappedValuesRDD
join at ALS.scala:335

[

#34: MappedValuesRDD
mapValues at ALS.scala:336

| #35: CoGroupedRDD

Y

join at ALS.scala:231

i

#36: MappedValuesRDD
join at ALS.scala:231
[

#37: FlatMappedValuesRDD
join at ALS.scala:231

[y

#38: FlatMappedRDD
flatMap at ALS.scala:231
L

#43: MappedRDD
map at ALS.scala:596
[

#44: MappedRDD
saveAsTextFile at ALS.scala:597

[/

_static/plus.png

_images/graphviz-2c338fe24b7e444d4755cfff0232964d0dac6497.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/file.png

_images/app-rdds.png
#0: ParallelCollectionRDD
makeRDD at EventReplayerTest.scala:22

!

#1: MappedRDD
map at EventReplayerTest.scala:23

_images/repl-rdds.png
#0: ParallelCollectionRDD
makeRDD at <console>:12

f

#1: MappedRDD
map at <console>:14

_static/minus.png

